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ABSTRACT
The δ-generalized labeled multi-Bernoulli (δ-GLMB) tracker is the first multiple hypothesis tracking (MHT)-like
tracker that is provably Bayes-optimal. However, in its basic form, the δ-GLMB provides no mechanism for
adaptively initializing targets at their first appearance from unlabeled measurements. By introducing a new
multitarget likelihood function that accounts for new target appearance, a data-driven δ-GLMB tracker is derived
that automatically initializes new targets in the tracker measurement update. Monte Carlo results of simulated
multitarget tracking problems demonstrate improved multitarget tracking accuracy over comparable adaptive
birth methods.

1. INTRODUCTION
Multitarget filtering is the process of simultaneously estimating one or more target’s kinematic states using noisy,
unattributed measurements with the possibility of misdetection and non-target-originated measurements, or
clutter. There are, in general, three main approaches to multitarget tracking: joint probabilistic data association
(JPDA),1 MHT,2 and finite set statistics (FISST).3, 4 The FISST approach has received significant attention
over the past decade because it enables a top-down Bayesian approach to solving multitarget tracking problems.
Central to the FISST approach is the concept of the random finite set (RFS). An RFS is a random-valued set, of
which the number of elements is also random. In the FISST framework, RFSs are used to describe the collection
of individual target states as well as the collection of unordered measurements at a given time step. By defining
a set-valued multitarget state and set-valued multitarget measurement, FISST extends familiar concepts from
single-target tracking to the multitarget domain. The resulting FISST toolset, which defines multitarget density
and likelihood functions, enables solution of multitarget tracking problems using similar techniques found in
single-target Bayesian estimation.

Two notable filters to emerge from the FISST approach are the probability hypothesis density (PHD)5, 6 and
cardinalized probability hypothesis density (CPHD)7 filters, which operate on a first-moment approximation of
the multitarget density and admit both Gaussian mixture (GM) and sequential Monte Carlo (SMC) implemen-
tations. Unlike traditional trackers, which, generally speaking, consist of a data association step followed by a
single-target filtering step, the PHD and CPHD filters avoid the data association step altogether by neglecting
target identity. For applications where target identity is not important, the reduced computational complexity
of unlabeled multitarget filters makes them appealing options over traditional data-association based trackers.

The PHD and CPHD filters maintain no record of track identity and, as a consequence, often suffer from track
continuity issues. To alleviate this, labeled extensions were developed for the PHD filter8, 9 and CPHD filter.10

Although these and other works improved track continuity through track labeling techniques, the concept of the
labeled RFS was only first introduced years later in Reference 11.

Enabled by labeled RFS theory, the δ-GLMB tracker was introduced as an analytic solution to the Bayes
multitarget filter.12, 13 The δ-GLMB tracker is arguably one of the most significant advancements to multitarget
tracking in recent years, as it is the first MHT-like tracker that is provably Bayes-optimal.4 The δ-GLMB tracker
is a major departure from its PHD and CPHD predecessors in a number of ways. Firstly, rather than operating on
a moment approximation, the δ-GLMB maintains a full multitarget density representation—a complete statistical
description from which lower dimensional statistics (such as the PHD) may be computed. Secondly, a unique
discrete label state is appended to the individual kinematic target state to facilitate target identification. Data
association is required, but its combinatorial output can be controlled through various sampling and truncation



techniques. Lastly, target labels in the δ-GLMB filter enable a clear connection between a given target and its
spatial uncertainty. This addresses a significant limitation of unlabeled representations, in which the individual
contributions of targets to the consolidated uncertainty representation (namely, the unlabeled PHD) are often
indistinguishable, as illustrated in Figure 1. Isolating an individual target’s uncertainty in an unlabeled density

Figure 1: In an unlabeled PHD representation (left), the uncertainty associated with an individual target is
often inextricable. Labeled statistics, such as the labeled PHD (right), are readily computable from the δ-GLMB
filter, thereby enabling track-specific uncertainty representation. As revealed in the labeled PHD (right), three
distinct targets are tracked—a feature that is not readily apparent from the unlabeled equivalent (left).

is especially challenging or impossible in situations involving closely spaced targets, low measurement signal-to-
noise ratio (SNR), or high clutter rates.

A critically important but often overlooked consideration in operational multitarget tracking is the method
by which target appearance, often referred to in tracking literature as target birth, is handled. In traditional
tracking algorithms, such as MHT and joint integrated probabilistic data association (JIPDA),14 new targets
are initialized directly from measurement data. In RFS-based filters, however, new targets are modeled by
intensity or density functions. Two challenges arise with this approach: determining an appropriate function
that accurately describes the birth process and modeling that function in a computationally efficient manner.

Unlabeled birth models commonly used in RFS filters include the Poisson density,6, 15 the independently and
identically distributed (i.i.d.) cluster density,7 and the multi-Bernoulli (MB) density.16 The Poisson density is
appealing in tracking applications where little information about the birth process is known a priori, as the
Poisson density is fully described by its intensity function (PHD).15 The intensity function describes the spatial
distribution of targets, and its integral over the scene volume is equal to the expected number of new targets,
which is Poisson-distributed. The i.i.d. cluster density relaxes the Poisson-distributed cardinality assumption and
instead uses an arbitrary probability mass function (pmf) to describe target cardinality. This approach is more
flexible to incorporating external information about target cardinality, such as soft data from a human operator
on the loop. The MB density is represented in terms of individual (single) target densities and probabilities of
existence. Using an MB birth model shifts the focus to individual birth targets, as opposed to the other two
aforementioned birth models, which can be interpreted as more population-centric approaches.

The generalized labeled multi-Bernoulli (GLMB) density is the most versatile labeled birth model. In fact,
its available level of specificity is rarely needed to describe the limited information known about a birth process
a priori. Two special cases of the GLMB density, namely the labeled multi-Bernoulli (LMB) density and labeled
Poisson density, require less specificity and simplify the Bayes recursion. The GLMB filter is capable of accepting
a GLMB birth density, but the majority of the literature has focused on the LMB density.12, 13, 17, 18 The LMB
density is parameterized by a set of value pairs (r(i), p(i)), in which r(i) represents the probability of existence
of target i and p(i) is its density. In the context of target birth, representation in this form requires a priori



specification of the probability density and probability of existence on an individual target basis. Such specificity
is achievable in tracking scenarios with known target birth locations and patterns, such as tracking vehicles
emerging from a tunnel during heavy traffic. However, in many tracking scenarios, when far less information is
known a priori, the LMB birth model approach may prove cumbersome or intractable.

In most real-world applications, a data-driven approach—that is, an approach where new targets are in-
stantiated from measurement data—is advantageous, and in many cases, unavoidable. Ideally, to instantiate
new targets from measurement data, only detections originating from new targets should be used to instantiate
target births. Of course, the challenge is differentiating new target detections from persistent (that is, previously
detected) target detections and clutter. Some insight can be gained by looking at the likelihood agreement of
measurements to persistent target estimates; measurements with a strong likelihood agreement to persistent
target estimates are less likely to have originated from a new target. Given a single multitarget measurement,
new target measurements and clutter are indistinguishable unless their spatial densities are disjoint. To that
end, most approaches19–21 to the data-driven birth problem rely on deferred decision, that is, delaying the
initialization of birth by one or more time steps.

Reference 19 provides a straightforward solution for adaptively introducing new targets from measurement
data in a Bernoulli filter by sampling the birth distribution at the locations of the measurements at the previous
step. Then, intuitively, a new target track is likely to be “confirmed” if another measurement is received close to
a measurement at the previous time step, whereas the possibility of subsequent clutter measurements mimicking
a new track is less likely. Reference 20 presents an adaptive birth model for the cardinality-balanced multi-
object multi-Bernoulli (CBMeMBer) filter. The received measurements at time k are used to adaptively form
the MB density of new births at time k + 1. In an effort to minimize the bias introduced by doubly using the
measurement data in both the update of persistent targets and formation of the birth density, the birth targets
seeded from measurements that have strong likelihood agreement to persistent target estimates are assigned a
lower probability of existence. Furthermore, an additional heuristic is introduced that prohibits new targets
from being assigned a probability of existence higher than a user-specified maximum value. The same approach
is applied in Reference 21 for the GLMB tracker. This approach is simple, effective, and requires minimal
implementation modifications. However, this approach violates the fundamental assumption that each target
generates observations independent of one another, as a birth target can be initialized from the same measurement
used to update a persistent target in the same hypothesis.

The filter proposed herein addresses some of the key challenges faced when implementing the GLMB trackers
on real-world data. First, a labeled Poisson RFS is used to model target birth, which requires less a priori
knowledge and is thus more “operator-friendly.” Second, to make the birth process “data-driven,” the GLMB
tracker is rederived such that no target may exist without a seed measurement. To achieve this, the case
of undetected birth targets is ignored, and the birth process is modeled in the update stage rather than the
prediction stage. The resulting filter initializes new targets immediately upon first detection with an appropriate
probability of existence without introducing statistical bias or additional heuristics.

2. BACKGROUND
Throughout this work, single-target states are represented by lowercase letters (e.g. x, x), while multitarget states
are represented by uppercase letters (e.g. X, X). Bolded symbols (e.g. π, x, X) are used to distinguish labeled
states and functions from unlabeled ones. Spaces are represented by blackboard bold symbols (e.g. X, Z, L).

The inner product
∫
f(x)g(x)dx is denoted by 〈f, g〉 and the multitarget exponential notation defined by

fA ,
∏

a∈A f(a), where f∅ , 1 by definition, is used throughout. The Kronecker delta is generalized to handle
vectors and sets as

δA(B) =

{
1, if B = A
0, otherwise .

Similarly, the indicator function is defined as

1A(B) =

{
1, if B ⊆ A
0, otherwise .



2.1 Random Finite Set
An RFS X on a space X is a set-valued random variable with realizations in the space of all finite subsets of X,
or F(X). A labeled RFS X is an RFS on X × L, where X is the kinematic space and L is the discrete label
space. The label of a labeled state x is recovered by L(x), where L : X× L→ L is the projection defined by
L((x, `)) , `. Similarly, for labeled RFSs, L(X) , {L(x) : x ∈ X}. The cardinality of an RFS X is denoted
by |X|.

2.2 Generalized Labeled Multi-Bernoulli
A GLMB density can be written as a mixture of multitarget exponentials in the form12

π(X) = ∆(X)
∑
ξ∈Ξ

w(ξ)(L(X))[p(ξ)]X , (1)

where each ξ ∈ Ξ represents a history of measurement association maps, each p(ξ)(·, `) is a probability den-
sity on X, and each weight w(ξ) is non-negative with

∑
(I,ξ)∈F(L)×Ξ

w(ξ)(I) = 1. The distinct label indicator

∆(X) = δ(|X|)(|L(X)|) ensures that only sets with distinct labels are considered. The sum of the weights∑
(I,ξ)∈F(L)×Ξ

w(ξ)(I)1I(`) can be interpreted as the probability of existence for track `.

2.3 δ-Generalized Labeled Multi-Bernoulli
A δ-GLMB density is a special case of the GLMB density, given by

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI(L(X))[p(ξ)]X ,

where

ω(I,ξ) , w(ξ)(I) .

Two important statistics, namely the cardinality distribution ρ(·) and PHD v(·), can be recovered from the
δ-GLMB density by

ρ(n) =
∑

(I,ξ)∈Fn(L)×Ξ

ω(I,ξ)

v(x) =
∑

(I,ξ)∈F(L)×Ξ

∑
`∈I

ω(I,,ξ)p(ξ)(x, `) ,

where Fn(L) denotes the class of finite subsets of L with exactly n elements.13

3. DATA-DRIVEN GLMB OVERVIEW
In the data-driven GLMB, the target birth process is modeled as a Poisson RFS, new targets are defined as
“born” at their first detection, and the incorporation of birth targets occurs in the measurement update. At a
given time k, birth targets are defined as the subset of targets whose first detection occurred at the current time
k. Targets are considered “persistent” if their first detection occurred at any time prior to the current time k.
Variables and densities corresponding to birth targets and persistent targets are denoted by subscripts “b” and
“p,” respectively.

For a given persistent multitarget state Xp, each single-target element (x, `) ∈ Xp is either detected with
probability pD(x, `) or misdetected with probability 1 − pD(x, `). Similar to References 22 and 23, a target’s
birth is treated here as its first detection, such that every element (x, `) of a given birth multitarget state Xb is
detected with probability pD(x, `) = 1.



A measurement association map θ is a one-to-one function that uniquely maps persistent target tracks to
the incoming measurement set Z. In a given association map, the subset of measurements assigned to persistent
targets is denoted by Zθ. The association map space is the set of all such association maps and is denoted
by Θ. Given an association map θ, another level of data association may be performed, mapping birth target
tracks to the non-assigned measurements Zp = Z −Zθ via the birth measurement association map ϑ. The birth
measurement association map space is the set of all birth measurement association maps and is denoted by V .
Both θ and ϑ obey the identity that θ(i) = θ(i′) > 0 or ϑ(i) = ϑ(i′) > 0 implies that i = i′.

The filter structure of the data-driven GLMB incorporates the birth process in the update stage rather than in
the prediction stage, as shown in Figure 2. At time k, the density of persistent targets πp(Xp|Z0:k−1) = πp(Xp),

prediction change of variables

update

π+(X+)

πp(Xp)
πb(Xb)

π(X)

Figure 2: Block diagram of the data-driven δ-GLMB.

where Z0:k−1 denotes all received measurements up to and including time k − 1, and the density of new targets
πb(Xb) undergo a Bayes measurement update to produce the joint posterior density at time k + 1, denoted by
π(X = Xp ∪Xb|Z0:k) = π(X). After each update, the persistent target label space L is redefined to include the
birth target label space B at that update; i.e. L , L ∪B. In the prediction stage, the posterior density π(X)
undergoes a time-update to produce the prior density π+(X+). At the next update at time k + 1, the birth
targets from time k are considered persistent. Thus, a change of variables is performed such that Xp ← X+ and
πp(Xp)← π+(X+).

4. DATA-DRIVEN GLMB UPDATE
Measurements are modeled as an RFS consisting of target detections, clutter, and target birth measurements,
such that

Z = Zp ∪ Zb ∪ Zc , (2)

where the “p,” “b,” and “c” subscripts correspond to persistent targets, birth targets, and clutter, respectively.
The false alarm process C is assumed to be Poisson-distributed in time with expected value λc and distributed
in space according to an arbitrary density κc(z)/λc. The persistent target measurement process Υ(Xp), birth
measurement process B(Xb), and false alarm process C are statistically independent.

4.1 Multitarget Likelihood Function
The inclusion of birth target measurements in the multitarget measurement process requires the development of
a new multitarget likelihood function. Using FISST, the derivation of this new multitarget likelihood function
can be performed in a systematic way. For the sake of exposition, the likelihood function is first developed for
the unlabeled RFS, and the labeled equivalent is provided for the final form.

Belief-Mass Function
The multitarget likelihood function is directly related to the belief-mass function, which is defined as βΨ(T ) ,
Pr(Ψ ⊆ T ) for some RFS Ψ and closed-set variable T . For the multitarget measurement RFS (Eq. 2), the



belief-mass function is

βk+1(T |X) = Pr(Υ(Xp) ∪ C ∪B(Xb) ⊆ T |X)

= Pr(Υ(Xp) ⊆ T, C ⊆ T, B(Xb) ⊆ T |X)

= Pr(Υ(Xp) ⊆ T |X) Pr(C ⊆ T ) Pr(B(Xb) ⊆ T |X)

= Pr(Υ(Xp) ⊆ T |Xp) Pr(C ⊆ T ) Pr(B(Xb) ⊆ T |Xb)

= βΥ(Xp)(T )βC(T )βB(Xb)(T ) .

The general product rule for arbitrary set functions φ1(S), . . . , φn(S) is given as3

δ

δY
(φ1(S) · · ·φn(S)) =

∑
W1]···]Wn=Y

δφ1
δW1

(S) · · · δφn
δWn

(S) ,

where the summation is taken over all mutually disjoint subsets W1, . . . ,Wn of Y such that W1 ∪ · · · ∪Wn = Y .
Using this rule to take the set derivative of the belief-mass function with respect to Z gives

δβk+1

δZ
(T |X) =

∑
Zp]Zb]Zc=Z

δβΥ(Xp)

δZp
(T ) · δβC

δZc
(T ) ·

δβB(Xb)

δZb
(T ) .

To relate the belief-mass function to the probability density, the Radon-Nikodým theorem (Ref. 3, Eq. (11.249)),

fΨ(Y ) =
δβΨ
δY

(∅) ,

is used. Setting T = ∅ gives

g(Z|X) =
δβk+1

δZ
(∅|X) =

∑
Zp]Zb]Zc=Z

fΥ(Xp)(Zp)fC(Zc)fB(Xb)(Zb) . (3)

Clutter Density
Using the known probability density for Poisson-distributed RFSs, the false alarm probability density is

fC(Zc) = e−λc
[
κc
]Zc

. (4)

Birth Target Measurement Density
Assuming that birth targets are detectable with pD = 1, then fB(Xb)(Zb) = 0 if |Zb| = eb 6= |Xb| and otherwise3

fB(Xb)(Zb) =
∑
σ

g(zb,1|xb,σ(1)) · · · g(zb,n|xb,σ(eb)) , (5)

where the summation is taken over all permutations σ of the numbers 1, . . . , eb. Alternatively, for |Zb| = |Xb|,
define a function µ : Zb → Xb by µ(zb,j) = xb,σ(j) such that µ is one-to-one, and any such function µ : Zb → Xb

defines a permutation σ. With this, Equation (5) can be written as

fB(Xb)(Zb) =
∑

µ :Zb→Xb

[g(·|µ(·))]Zb . (6)

Persistent Target Measurement Density
In Reference 3, Eq. (12.120), it is shown that if Zp = {zp,1, . . . , zp,ep} with |Zp| = ep, then fΥ(Xp) = 0 if
ep > |Xp|, and otherwise

fΥ(Xp)(Zp) = fΥ(Xp)(∅)
∑

1≤i1 6=···6=iep≤n

ep∏
j=1

pD(xij )g(zp,j |xij )
1− pD(xij )

, (7)



where

fΥ(Xp)(∅) =
[
1− pD

]Xp
.

Following in the style of Reference 3, Equation (7) can be written more conveniently by defining a function
τ : Zp → Xp by τ(zp,j) = xij for all j = 1, . . . , ep, such that τ is one-to-one, and any such function τ : Zp → Xp

defines an ep-tuple (i1, . . . , iep) with 1 ≤ i1 6= · · · 6= iep ≤ n. With this, Equation (7) is rewritten as

fΥ(Xp)(Zp) = fΥ(Xp)(∅)
∑

τ :Zp→Xp

[
pD(τ(·))g(·|τ(·))
1− pD(τ(·))

]Zp

. (8)

Proposition 4.1. Given the clutter density (Eq. 4), birth target measurement density (Eq. 6), and persis-
tent target measurement density (Eq. 8), the multitarget likelihood of the joint measurement set given the joint
multitarget state is

g(Z|X) = e−λc [κc]
Z
∑
θ∈Θ

∑
ϑ∈V̂

δθ−1({0:|Z|})(L(Xp))δϑ−1({1:|Zp|})(L(Xb))

× |B|!
(|B| − |L(Xb)|)!

[ψZ(·; θ)]Xp

[
g(zb,ϑ(`)|·)
κc(zb,ϑ(`))

]Xb

, (9)

where

ψZ(x, `; θ) = δ0(θ(`))(1− pD(x, `)) + (1− δ0(θ(`)))
pD(x, `)g(zθ(`)|x, `)

κc(zθ(`))
.

Proof: Substituting Equations (4), (6), and (8) into Equation (3) gives

g(Z|X) =
∑

Zp]Zb]Zc=Z

fΥ(Xp)(Zp)fC(Zc)fB(Xb)(Zb)

= e−λcfΥ(Xp)(∅)
∑

Zp]Zb]Zc=Z

[κc]
Zc

∑
τ :Zp→Xp

[
pD(τ(·))g(·|τ(·))
1− pD(τ(·))

]Zp ∑
µ :Zb→Xb

[g(·|µ(·))]Zb . (10)

Using the algebraic relationship

fZc =
fZ

fZ−Zc
=

fZ

fZpfZb
,

two of the products of Equation (10) can be combined to give

g(Z|X) = e−λc [κc]
Z
fΥ(Xp)(∅)

∑
Zp]Zb]Zc=Z

∑
τ :Zp→Xp

∑
µ :Zb→Xb

[
pD(τ(·))g(·|τ(·))

(1− pD(τ(·)))κc(·)

]Zp
[
g(·|µ(·))
κc(·)

]Zb

.

Let Zp = Z − Zp = Zc ] Zb, and split the first sum so that

g(Z|X) = e−λc [κc]
Z
fΥ(Xp)(∅)

∑
Zp]Zp=Z

∑
τ :Zp→Xp

[
pD(τ(·))g(·|τ(·))

(1− pD(τ(·)))κc(·)

]Zp ∑
Zc]Zb=Zp

∑
µ :Zb→Xb

[
g(·|µ(·))
κc(·)

]Zb

.

Note that, in order to facilitate multiplication with priors of the form of Equation (1), it is desirable to express
the product terms over the multitarget state rather than the multitarget measurement. To that end, let Z ∪{φ}
be the augmented observation set obtained by appending a dummy variable φ, which represents misdetection, to
Z. Then, each choice of Zp ]Zp = Z and each choice of one-to-one mapping function τ : Zp → Xp determines a



function γZp,τ : Xp → Z ∪ {φ} defined by γZp,τ (x) = z if there is a z with τ(z) = x, and γZp,τ (x) = φ otherwise.
With this, the first two sums can be combined into one sum over γZp,τ ; that is,

g(Z|X) = e−λc [κc]
Z
fΥ(Xp)(∅)

∑
γ :Xp→Z∪{φ}

[
pD(·)g(γ(·)|·)

(1− pD(·))κc(γ(·))

]{x : γ(x)6=φ} ∑
Zc]Zb=Z−γ(Xp)

∑
µ :Zb→Xb

[
g(·|µ(·))
κc(·)

]Zb

,

where γ(x) = γZp,τ and γ(Xp) = {γ(xp,1), . . . , γ(xp,n)} are used for readability.
Furthermore, for each choice of Zc ] Zb = Z − γ(Xp) and each choice of function µ : Zb → Xb, define the

function κZb,µ : Xb → Z − γ(Xp) by κZb,µ(xb) = zb if there is a zb with µ(zb) = xb. Note that because µ is
restricted to |Zb| = |Xb|, κZb,µ is undefined over the domain |Xb| > |Z − γ(Xp)|. With this, the last two sums
can be combined, and

g(Z|X) = e−λc [κc]
Z
fΥ(Xp)(∅)

∑
γ :Xp→Z∪{φ}

[
pD(·)g(γ(·)|·)

(1− pD(·))κc(γ(·))

]{x : γ(x)6=φ} ∑
κ :Xb→Z−γ(Xp)

[
g(κ(·)|·)
κc(κ(·))

]Xb

. (11)

Finally, Equation (11) can be expressed in a more tangible form in terms of target-to-measurement associa-
tions. Reference 3 defines an association mathematically as a function

θ : {1, . . . , |Xp|} → {0, 1, . . . , |Z|} ,

where θ(i) = 0 represents a missed detection. For every i = 1, . . . , |Xp|, if θ(i) > 0, then the observation zθ(i) is
uniquely associated with the track xi, but if θ(i) = 0, then no observation is associated with xi (the target xi
was not detected). With this, Equation (11) is rewritten as

g(Z|X) = e−λc [κc]
Z
fΥ(Xp)(∅)

∑
θ

[
pD(xi)g(zθ(·)|xi)

(1− pD(xi))κc(zθ(·))

]{i : θ(i)>0} ∑
κ :Xb→Z−Zθ

[
g(κ(·)|·)
κc(κ(·))

]Xb

, (12)

where the first sum is taken over all valid target-to-measurement associations, and Zθ = {zθ(i) : θ(i) > 0}. Not-
ing that the set of measurements not assigned to persistent targets Zp = Z − Zθ, define a birth measurement
association function ϑ : {1, . . . , |Xb|} → {1, . . . , |Zp|} that has the property ϑ(j) = ϑ(j′) implies j = j′. In other
words, a birth target is assigned one and only one measurement. With this, Equation (12) can be written as

g(Z|X) = e−λc [κc]
Z
fΥ(Xp)(∅)

∑
θ

[
pD(xi)g(zθ(·)|xi)

(1− pD(xi))κc(zθ(·))

]{i : θ(i)>0} ∑
ϑ

[
g(zp,ϑ(·)|xb,j)
κc(zp,ϑ(·))

]{j : 1≤j≤|Xb|}

. (13)

Labeled Equivalent
The labeled equivalent of Equation (13) is

g(Z|X) = e−λc [κc]
Z
fΥ(X)(∅)

∑
θ∈Θ

∑
ϑ∈V

δθ−1({0:|Z|})(L(Xp))δϑ−1({1:|Zp|})(L(Xb))

×
[

pD(·)g(zθ(`)|·)
(1− pD(·))κc(zθ(`))

]Xp
[
g(zp,ϑ(`)|·)
κc(zp,ϑ(`))

]Xb

, (14)

where, as a slight abuse of notation, the new persistent target measurement association map θ is defined over
the label space L rather than over {1, . . . , |Xp|} and Θ is the space of mappings θ : L→ {0 : |Z|}. Similarly, the
birth target measurement association ϑ is defined over the birth label space B rather than over {1, . . . , |Xb|},
and V is the space of mappings ϑ : B → {1 : |Zp|}. Note that, while not explicitly denoted, the space V is a
function of θ. Also note that a given ϑ need not span the entire birth target label space B; in fact, ϑ(` ∈ B)
undefined implies birth target ` does not exist in the given hypothesis. The term δθ−1({0:|Z|})(L(Xp)), which is
equal to 1 when the part of the domain of θ that maps to {0 : |Z|} , {0, 1, . . . , |Z|} matches the labels of Xp,



and 0 otherwise, restricts the summation to valid association maps in Θ. The term δϑ−1({1:|Zp|})(L(Xb)), where
{1 : 0} = ∅ by convention, restricts the summation to valid birth target association maps.

In practicality, the full birth target measurement association space V need not be considered, as the inclusion
of multiple nearly-identical assignments in which only the birth target label order differs is unnecessary. For
example, there is no apparent value in considering two identical birth target initializations, wherein one, the
targets are labeled as “1,” “2,” and “3,” and in the other “2,” “1,” and “4.” To address this, define a single
unique birth label assignment function z : B → {1 : |Z|} that obeys the identity: z(i) = z(i′) implies that
i = i′. With this, a reduced birth target measurement association space V̂ ⊆ V can be defined as the set of all
ϑ(i) that satisfy zp,ϑ(i)(`) = zz(`). Using the reduced space V̂ ensures that a measurement is associated with at
most one unique birth label across all hypotheses. Equation (14) can be written in terms of V̂ as

g(Z|X) = e−λc [κc]
Z
∑
θ∈Θ

∑
ϑ∈V̂

δθ−1({0:|Z|})(L(Xp))δϑ−1({1:|Zp|})(L(Xb))

× |B|!
(|B| − |L(Xb)|)!

[ψZ(·; θ)]Xp

[
g(zp,ϑ(`)|·)
κc(zp,ϑ(`))

]Xb

,

where

ψZ(x, `; θ) = δ0(θ(`))(1− pD(x, `)) + (1− δ0(θ(`)))
pD(x, `)g(zθ(`)|x, `)

κc(zθ(`))
.

�

In order to demystify the numerous mapping functions and seemingly complicated measurement indexing,
a simple example is presented. The persistent target label space at a given time step is L = {1, 2, 3}. Five
measurements are received, and the birth target label space is defined as B = {4, 5, 6, 7, 8}. This selection
ensures that L ∩ B = ∅ and allows for the possibility that all five measurements are due to new targets. To
ensure that these labels are associated with the same measurements across all hypotheses, the unique birth
label assignment function z : B → {1 : |Z|} is defined as follows: z(4) = 1, z(5) = 2, z(6) = 3, z(7) = 4, and
z(8) = 5. Table 1 shows all of the equivalent measurements using different index functions for a given valid
selection of θ : L → {0 : |Z|} and ϑ. The persistent target measurement association map shown is given by

Table 1: Measurement equivalence for example target/measurement association maps θ and ϑ.

B 4 5 6 7 8

Z z1 z2 z3 z4 z5
Zz(B) zz(4) zz(5) zz(6) zz(7) zz(8)

Zθ zθ(1) zθ(3)
Zp = Z − Zθ zp,1 zp,2 zp,3

Zb zb,1 zb,2

θ(1) = 2, θ(2) = 0 (indicating a missed detection for ` = 2), and θ(3) = 4. Given this selection of θ, the birth
target association map is defined as ϑ(4) = 1, ϑ(8) = 3, and undefined over the rest of B.

4.2 Bayes Update
The joint posterior density is related to the persistent target prior, birth target prior, and multitarget likelihood
function through the Bayes update

π(X|Z) = g(Z|X)πp(Xp)πb(Xb)∫
g(Z|X)πp(Xp)πb(Xb)δX

.

The prior persistent target density is a δ-GLMB distribution of the form

πp(Xp) = ∆(Xp)
∑
ξ∈Ξ

w(ξ)(L(Xp))[p
(ξ)]Xp , (15)



where ∆(Xp) is the distinct label indicator δ(|Xp|)(|L(Xp)|). The prior birth target density is assumed to be
Poisson, given by

πb(Xb) = ∆(Xb)wb(L(Xb))[pb]
Xb , (16)

where

pb(x, `) = vb(x)/ 〈vb, 1〉 ,

wb(B) = 1B(B)Pois〈vb,1〉(|B|)
(|B| − |B|)!
|B|!

,

Poisλ(n) , e−λλn/n! ,

and vb(x) is the PHD of birth targets. The Poisson density is a natural choice for modeling target birth when little
information is known a priori. In operational tracking, specification of every possible birth target’s probability of
existence is non-intuitive if no other information is available. A “best guess” of the rate that new targets appear
is typically less restrictive and is sufficient to fully describe the Poisson cardinality distribution. Intuitively, the
use of a Poisson density changes the question from “What is the likelihood that new targets 2 and 3 are born?”
to “What is the likelihood that two targets are born?”
Proposition 4.2. Given the persistent multitarget prior (Eq. 15), birth multitarget prior (Eq. 16), and likelihood
function (Eq. 9), the joint multitarget posterior density is given by

π(X|Z) = ∆(Xp)∆(Xb)
∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

w
(ξ,θ,ϑ)
Z (L(X))[p(ξ,θ,ϑ)(·|Z)]X ,

where

w
(ξ,θ,ϑ)
Z (L) ,

δθ−1({0:|Z|})(L ∩ L)δϑ−1({1:|Zp|})(L− L)w(ξ)(L ∩ L)w̃b(L− L)[η(ξ,θ)
Z ]L∩L

[
pb(zp,ϑ(·))

κc(zp,ϑ(`))

]L−L

∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

∑
J∈F(L)

∑
B∈F(B)

δθ−1({0:|Z|})(J)δϑ−1({1:|Zp|})(B)w̃b(B)w(ξ)(J)
[
η
(ξ,θ)
Z

]J [
pb(zp,ϑ(·))

κc(zp,ϑ(·))

]B
,

and

p(ξ,θ,ϑ)(x, `|Z) , 1L(`)p
(ξ,θ)(x, `|Z) + (1− 1L(`))p

(ϑ)
b (x, `|Z) ,

p(ξ,θ)(x, `|Z) , p(ξ)(x, `)ψZ(x, `; θ)

η
(ξ,θ)
Z (`)

, (17)

η
(ξ,θ)
Z (`) = 〈p(ξ)(·, `), ψZ(·, `; θ)〉 ,

p
(ϑ)
b (x, `|Z) ,

g(zp,ϑ(`)|x)pb(x)〈
g(zp,ϑ(`)|·), pb(·)

〉 , (18)

pb(z) , 〈g(z|·), pb(·)〉 .

Proof: Multiplication of the multitarget priors (Eqs. 15 and 16) and the likelihood function (Eq. 9) gives

g(Z|X)πp(Xp)πb(Xb) = ∆(Xp)∆(Xb)e
−λcκZc

∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

δθ−1({0:|Z|})(L(Xp))δϑ−1({1:|Zp|})(L(Xb))

× w(ξ)(L(Xp))w̃b(L(Xb))[p
(ξ)(·)ψZ(·, θ)]Xp

[
g(zp,ϑ(`)|·)pb(·)
κc(zp,ϑ(`))

]Xb

,

where

w̃b(B) , wb(B)
|B|!

(|B| − |B|)!
= 1B(B)Pois〈vb,1〉(|B|) .



Substituting Equation (17) gives

g(Z|X)πp(Xp)πb(Xb) = ∆(Xp)∆(Xb)e
−λcκZc

∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

δθ−1({0:|Z|})(L(Xp))δϑ−1({1:|Zp|})(L(Xb))

× w(ξ)(L(Xp))w̃b(L(Xb))[η
(ξ,θ)
Z ]L(Xp)[p(ξ,θ)(·|Z)]Xp

[
g(zp,ϑ(`)|·)pb(·)
κc(zp,ϑ(`))

]Xb

. (19)

Now, consider the integral∫
g(Z|X)πp(Xp)πb(Xb)δX

= e−λcκZc

∫
∆(Xp)∆(Xb)

∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

δθ−1({0:|Z|})(L(Xp))δϑ−1({1:|Zp|})(L(Xb))

× w(ξ)(L(Xp))w̃b(L(Xb))[η
(ξ,θ)
Z ]L(Xp)[p(ξ,θ)(·|Z)]Xp

[
g(zp,ϑ(`)|·)pb(·)
κc(zp,ϑ(`))

]Xb

δX

= e−λcκZc
∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

∫
∆(Xp)δθ−1({0:|Z|})(L(Xp))w

(ξ)(L(Xp))[η
(ξ,θ)
Z ]L(Xp)[p(ξ,θ)(·|Z)]XpδXp

×
∫

∆(Xb)δϑ−1({1:|Zp|})(L(Xb))w̃b(L(Xb))

[
g(zp,ϑ(`)|·)pb(·)
κc(zp,ϑ(`))

]Xb

δXb . (20)

Lemma 3 of Reference 12 states

Let ∆(X) denote the distinct label indicator δ|X|(|L(X)|). Then for h : F(L)→ R and g : X× L→ R,
integrable on X, ∫

∆(X)h(L(X))gXδX =
∑

L∈F(L)

h(L)

[∫
g(x, ·)dx

]L
.

Applying this lemma to the integral over Xp and the integral over Xb in Equation (20) gives∫
g(Z|X)πp(Xp)πb(Xb)δX = e−λcκZc

∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

∑
J∈F(L)

∑
B∈F(B)

δθ−1({0:|Z|})(J)δϑ−1({1:|Zp|})(B)

× w̃b(B)w(ξ)(J)
[
η
(ξ,θ)
Z

]J [∫
g(zp,ϑ(·)|x, ·)pb(x, ·)

κc(zp,ϑ(·))
dx

]B
.

Define the marginal birth density over the measurement space as

pb(z, `) , 〈g(z|·, `), pb(·, `)〉 . (21)

If the individual birth measurement likelihood is independent of target label (g(zp,ϑ(·)|x, `) = g(zp,ϑ(·)|x)) and the
individual target birth density is independent of target label (pb(x, `) = pb(x), which is true under the Poisson
birth assumption), then pb(z, `) = pb(z). With this,∫

g(Z|X)πp(Xp)πb(Xb)δX = e−λcκZc
∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

∑
J∈F(L)

∑
B∈F(B)

δθ−1({0:|Z|})(J)δϑ−1({1:|Zp|})(B)

× w̃b(B)w(ξ)(J)
[
η
(ξ,θ)
Z

]J [
pb(zp,ϑ(·))

κc(zp,ϑ(·))

]B
. (22)



Going back to the Bayes update numerator term (Eq. 19) and substituting Equation (21),

g(Z|X)πp(Xp)πb(Xb) = ∆(Xp)∆(Xb)e
−λcκZc

∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

δθ−1({0:|Z|})(L(Xp))δϑ−1({1:|Zp|})(L(Xb))

× w(ξ)(L(Xp))w̃b(L(Xb))[η
(ξ,θ)
Z ]L(Xp)[p(ξ,θ)(·|Z)]Xp

[
pb(zp,ϑ(·))p

(ϑ)
b (·|Z)

κc(zp,ϑ(`))

]Xb

. (23)

Finally, using Equations (22) and (23) and applying Bayes’ rule, the posterior multitarget density is obtained as

π(X|Z) = g(Z|X)πp(Xp)πb(Xb)∫
g(Z|X)πp(Xp)πb(Xb)δX

= ∆(Xp)∆(Xb)
∑
ξ∈Ξ

∑
θ∈Θ

∑
ϑ∈V̂

w
(ξ,θ,ϑ)
Z (L(X))[p(ξ,θ,ϑ)(·|Z)]X .

�

4.3 Special Case: Linear-Gaussian Measurements, Uniform Birth Spatial Density
If the single-target measurement likelihood function is linear-Gaussian, such that

g(z|x, `) = g(z|x) = N (z;Hx,R) ,

and the birth target spatial density pb(x, `) = pb(x) = UX(x) , 1/VX, then the measurement-marginal target
birth density (Eq. 21) is

pb(z) ≈ UZ(z) , 1/VZ

for sufficiently small R, where VX and VZ are the “scene volumes” in the single-target kinematic space and
single-target measurement space, respectively.

Furthermore, if the entire single-target state space is measurable and the observation function is one-to-one,
Equation (18) can be approximated by

p
(ϑ)
b (x, `|Z) = N (x;H−1zp,ϑ(`), H

−1RH−T ) .

In many linear tracking problems, only part of the state is directly observed by a single measurement. Denote
the observed portion of that state by x̃ and the non-observed portion by x such that xT = [x̃T , xT ]. Denote by
H̃ the nonsingular reduced observation matrix, such that g(z|x) = g(z|x̃) = N (z; H̃x̃, R). The density pb(x, `) of
the unobservable portion of the state is the marginal

∫
pb(x, `)dx̃. The measurement-conditioned single-target

birth density is then

p
(ϑ)
b (x, `|Z) =

[
N (x̃; H̃−1zp,ϑ(`), H̃

−1RH̃−T )
pb(x, `)

]
.

5. PREDICTION
In the prediction stage, the posterior density undergoes a time-update to produce the density at time k + 1,
which is denoted by π+(X+). The posterior density is propagated forward in time according to the multitarget
Chapman-Kolmogorov equation

π+(X+) =

∫
f(X+|X)π(X)δX . (24)

The transition density f(X+|X) describes both target survival and kinematic state evolution. Each target either
survives with probability pS(x, `) or dies with probability qS(x, `) = 1−pS(x, `). A surviving target state evolves



probabilistically to a new state (x+, `+) according to the single-target transition density f(x+|x, `)δ`(`+). From
Reference 12, the multitarget transition density can be written in GLMB form as

f(X+|X) = ∆(X+)∆(X)1L(X)(L(X+))[Φ(X+; ·)]X , (25)

where

Φ(X+;x, `) ,
∑

(x+,`+)∈X+

δ`(`+)pS(x, `)f(x+|x, `) + [1− 1L(X+)(`)]qS(x, `) .

In Equation (25), the term 1L(X)(L(X+)) ensures that the new multitarget label set contains no labels not
present in L(X).

Proposition 5.1. Given a posterior GLMB density of the form of Equation (1) and multitarget transition
density given by Equation (25), the predicted density is also a GLMB density given by

π+(X+) = ∆(X+)
∑
ξ∈Ξ

w
(ξ)
S (L(X+))[p

(ξ)
S ]X+ ,

where

w
(ξ)
S (I) , [η

(ξ)
S ]I

∑
J∈F(L)

1J(I)[q
(ξ)
S ]J−Iw(ξ)(J) ,

η
(ξ)
S (`) ,

∫ 〈
pS(·, `)f(x|·, `), p(ξ)(·, `)

〉
dx ,

q(ξ)s ,
〈
qS(·, `), p(ξ)(·, `)

〉
, and

p
(ξ)
S (x, `) ,

〈
pS(·, `)f(x|·, `), p(ξ)(·, `)

〉
η
(ξ)
S (`)

.

Proof: Substituting Equation (25) into Equation (24),

π+(X+) = ∆(X+)
∑
ξ∈Ξ

∫
∆(X) 1L(X)(L(X+))w

(ξ)(L(X))[Φ(X+; ·)p(ξ)]XδX

= ∆(X+)
∑
ξ∈Ξ

∑
I∈F(L)

1I(L(X+))w
(ξ)(I)

∏
`∈I

〈
Φ(X+; ·, `), p(ξ)(·, `)

〉
. (26)

The product in Equation (26) can be separated into two products over persistent target labels and non-surviving
(death) target labels as∏

`∈I

〈
Φ(X+; ·, `), p(ξ)(·, `)

〉
=

∏
`∈L(X+)

〈
Φ(X+; ·, `), p(ξ)(·, `)

〉 ∏
`∈I−L(X+)

〈
Φ(X+; ·, `), p(ξ)(·, `)

〉
=

∏
`∈L(X+)

∑
(x+,`+)∈X+

δ`(`+)
〈
pS(·, `)f(x+|·, `), p(ξ)(·, `)

〉 ∏
`∈I−L(X+)

〈
qS(·, `), p(ξ)(·, `)

〉
=

∏
`∈L(X+)

∑
(x+,`+)∈X+

δ`(`+)p
(ξ)
S (x+, `)η

(ξ)
S (`)

∏
`∈I−L(X+)

q
(ξ)
S (`) , (27)



Because the sum in Equation (27) has only one nonzero term (when ` = `+), it can be combined with the product
so that ∏

`∈I

〈
Φ(X+; ·, `), p(ξ)(·, `)

〉
=

∏
(x+,`+)∈X+

p
(ξ)
S (x+, `)η

(ξ)
S (`)

∏
`∈I−L(X+)

q
(ξ)
S (`)

= [p
(ξ)
S ]X+ [η

(ξ)
S ]L(X+)[q

(ξ)
S ]I−L(X+) .

This simplified expression can be substituted into Equation (26) to produce the final time-update equation as

π+(X+) = ∆(X+)
∑
ξ∈Ξ

∑
I∈F(L)

1I(L(X+))w
(ξ)(I)[p

(ξ)
S ]X+ [η

(ξ)
S ]L(X+)[q

(ξ)
S ]I−L(X+)

= ∆(X+)
∑
ξ∈Ξ

w
(ξ)
S (L(X+))[p

(ξ)
S ]X+ .

�

6. δ-GENERALIZATION
For more straightforward implementation, the data-driven GLMB can be written in δ-generalized form, which
simply makes use of the identity

w(ξ)(J) =
∑

I∈F(L)

w(ξ)(I)δI(J) .

With this, a standard GLMB distribution can be written as a δ-GLMB as

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI(L(X))[p(ξ)]X ,

where ω(I,ξ) , w(ξ)(I).

6.1 Data-Driven δ-GLMB Update
Given a prior δ-GLMB of the form

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI(L(X))[p(ξ)]X ,

the measurement-updated posterior is

π(X|Z) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

∑
ϑ∈V̂

ω(I,ξ,θ,ϑ)(Z)δI(L(X))
[
p(ξ,θ,ϑ)(·|Z)

]X
,

where ω(I,ξ,θ,ϑ)(Z) , w
(ξ,θ,ϑ)
Z (I).

6.2 Data-Driven δ-GLMB Prediction
Given a posterior δ-GLMB density of the form

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI(L(X))[p(ξ)]X ,

the time-updated prior is

π+(X+) = ∆(X+)
∑

(I,ξ)∈F(L)×Ξ

ω
(I,ξ)
S δI(L(X+))[p

(ξ)
S ]X+ ,

where ω(I,ξ)
S , w

(ξ)
S (I).



7. NUMERICAL EXAMPLE
7.1 Example 1
To evaluate the performance of the data-driven δ-GLMB filter, a simulation is performed with numerous target
births. The single-target state xk = [rx,k, ry,k, ṙx,k, ṙy,k]

T consists of the Cartesian position and velocity of the
target. The true number of births at every time step is sampled from a Poisson distribution with mean λb = 2.0.
The birth targets’ true initial positional states are sampled uniformly over the scene, and the true initial velocities
are sampled from a zero-mean Gaussian distribution with standard deviation σṙ = 0.05 [m/s]. The simulation
begins with three true targets and concludes with 28, with 30 true targets in total (two target deaths). The true
paths of all thirty targets are shown in Figure 3.
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Figure 3: Simulated true motion. Starting locations are represented by square markers.

Target motion is propagated via a constant-velocity model given as

xk+1 = Fkxk +Mkηk ,

where ηk is a 2× 1 Gaussian white noise vector with E{ηkηTk } = Qk,

Fk =


1 0 ∆t 0.
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , and Mk =


0 0
0 0√
∆t 0

0
√
∆t

 .

The process noise matrix is taken to be Qk = diag{10−5, 10−5}. Measurements in the form of Cartesian position
coordinates are generated from the targets at 1 [Hz] with a constant probability of detection of pD = 0.75. If
detected, measurements are corrupted with zero-mean additive Gaussian noise with standard deviation σx,y =
0.1 [m]. Clutter is generated as a Poisson RFS with intensity κc(z) = λcUZ(z), where λc = 3.0.

To study the efficacy of the data-driven δ-GLMB filter, its performance is compared to the original δ-GLMB
filter with the adaptive LMB birth process proposed in Reference 21. The computational complexity of each filter
is controlled through the maximum allowed number of hypotheses, which is chosen as Jmax = 500. The adaptive
LMB implementation additionally requires specification of a maximum birth target weight, which is chosen as
rB,max = 0.75. A total of 500 Monte Carlo simulations are run, in which detectability, measurement noise, and
clutter are randomly sampled. Target trajectories and times of birth are held constant across the runs. At each
time step, state estimates are extracted from the multitarget posterior density using a suboptimal version of the



so-called “Marginal Multi-object Estimator,” as presented in Reference 13. Using the positional components of
the state estimates and the true target positions, the first-order optimal subpattern assignment (OSPA) metric24

is computed with cutoff distance c = 0.5 [m] and averaged over the 500 runs, as shown in Figure 4a.
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Figure 4: Average first-order OSPA and true target cardinality over time.

On average, lower OSPA values, and thus, higher accuracy estimates, are produced by the data-driven
approach at every time step, as demonstrated in Figure 4a. Furthermore, the average estimation error of the
data-driven filter trends downward over the simulation period, despite the steadily increasing number of visible
targets, whereas the average estimation error given by the adaptive LMB approach trends upward after k = 12.
The true total cardinality and birth/death cardinality shown in Figure 4b clearly reveal a correlation between
the estimation performance and changes in target cardinality. Specifically, in the case of the adaptive LMB
approach, all of the instances of significant accuracy improvement (in the form of drops in OSPA) coincide with
instances when no targets are born, namely k = 3, 5, 7, 8, and 11. To some extent, this correlation is expected
due to the adaptive LMB method’s inherent deferred birth initialization.

7.2 Example 2
Example 2 is similar to Example 1, except the simulation time, clutter rate, and measurement noise are increased.
Measurements are corrupted with zero-mean additive Gaussian noise with standard deviation σx,y = 0.25 [m].
Clutter is generated as a Poisson RFS with intensity κc(z) = λcUZ(z), where λc = 5.0. The simulation begins
with three true targets and concludes with 102 true targets, with 116 true targets in total (14 target deaths).
The true trajectories of all 116 targets are shown in Figure 5 and in Figure 6 with a single trial’s detections
overlayed.

In each of 500 Monte Carlo trials, detectability, measurement noise, and clutter are randomly sampled while
the target trajectories and times of birth are held constant. The OSPA metric is averaged over the 500 trials and
shown in Figure 7a for both methods. In terms of the OSPA multitarget miss distance, the data-driven δ-GLMB
produces (on average) higher accuracy multitarget estimates at every time step. Note that trial-averaged OSPA
results should be interpreted as a broad indication of filter importance, as relative performance could vary by
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Figure 5: Simulated true motion. Starting locations are represented by square markers.
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Figure 6: True position histories over time with overlayed measurements from a single Monte Carlo trial.
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Figure 7: Average first-order OSPA and true target cardinality over time.

trial. In this example, the performance of both filters degrades significantly over time, as indicated by the rising
OSPA values, which trend toward the cutoff distance c = 0.5 [m].

Several adjustments could be made to potentially improve the performance of both filters in this example.
Substitution of the suboptimal multitarget state extraction method with an optimal estimator would likely result
in more accurate estimates and lower OSPA, although any optimal estimator would require more computational
resources. Additionally, the maximum number of hypotheses Jmax should be increased to better accommodate
large numbers of targets, and more specifically, large numbers of measurements. While increasing Jmax in
this example would undoubtedly improve performance, the resulting error reduction is likely negligible when
compared to other error sources. In particular, the combination of high spatial target density and relatively
high measurement noise produces large data association errors. In fact, as suggested by Figure 6, the closest
measurement to a given true target location is often a measurement generated by another target.

8. CONCLUSIONS
A variation of the standard δ-generalized labeled multi-Bernoulli (δ-GLMB) multitarget filter is derived under
assumptions that facilitate the automatic initialization of new targets at the moment of their first detection.
The resulting “data-driven” δ-GLMB filter differs from other adaptive birth approaches in that the birth ini-
tialization mechanism is an intrinsic part of the filter rather than an adaptation and avoids the introduction
of bias. A key differentiation between the data-driven δ-GLMB and the standard δ-GLMB is the use of a new
multitarget likelihood function that considers measurements from birth targets in addition to those originating
from previously-detected “persistent” targets and clutter.

To evaluate the performance of the data-driven δ-GLMB filter, a simple tracking problem with multiple target
appearances is simulated using synthetic measurement data. Two variants of the problem with differing levels
of difficulty are demonstrated. For each variant of the tracking problem, a Monte Carlo analysis is performed
using 500 trials with randomly-varying measurement noise, detectability, and clutter. In each trial, multitarget
state estimates are extracted from the posterior density at each time step and used to compute the optimal
subpattern assignment (OSPA) multitarget miss distance. A comparison between the data-driven δ-GLMB and



a similar adaptive birth approach is performed using OSPA values averaged over the Monte Carlo trials, and the
data-driven δ-GLMB is shown to outperform the other method in both problem variants.
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