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BAYESIAN ANGLES-ONLY CISLUNAR SPACE OBJECT
TRACKING

Keith A. LeGrand*, Aneesh V. Khilnani†, and John L. Iannamorelli†

Angles-only orbit determination involves the estimation of a satellite’s unknown
orbit without access to range or velocity measurements. Angles measurements,
which are typically passive, are the primary means for tracking distant orbits,
where active sensing is energy-prohibitive. This paper presents a Bayesian ap-
proach for tracking objects in the cislunar regime using noisy angles measure-
ments. The proposed filter addresses challenges in the cislunar setting, which in-
clude dynamics-induced rapid uncertainty growth and long periods of non-observation.
The filter is shown to be effective over a range of L2 halo orbit determination prob-
lems and to significantly outperform a central-moment based filter.

INTRODUCTION

Space mission trends in recent years show increasing interest and activity in cislunar space. While
the growing number of planned missions in this orbital regime reflects the great potential of cislunar
space in commercial and military enterprises, it has also raised concerns about the inadequacy of
existing infrastructure to support these operations. In particular, the well-established approaches
to space domain awareness (SDA) for the low Earth orbit (LEO) and geostationary Earth orbit
(GEO) regimes are ill-suited for the cislunar region due to the vast distances, chaotic dynamics, and
extremely long periods of space object non-detectability.1

Recent work in cislunar space object tracking has considered the use of the deep space network
(DSN) for tracking objects in halo orbits.2, 3 DSN based tracking is a highly attractive option for
special uses, such as tracking crewed spacecraft, due to the extremely high accuracy measurements
it provides and the availability of multiple ground stations across the globe. On the other hand, the
use of active radio frequency (RF) measurements for general cislunar SDA would require prohibitive
amounts of energy.1 Space-based observers may play a key role in future cislunar SDA, as they can
increase sensing coverage, geometric diversity of observations, and observation opportunities.4–6

Work in [7] explored the observation opportunities of ground-based telescopes and showed the
complicated uncertainty structures that emerge during extended periods of non-observation. On the
other hand, certain families of multi-body orbits such as 2:1 resonant orbits can result in nearly
Gaussian uncertainty propagation, in which case central-moment filters, such as the unscented
Kalman filter (UKF)8 may suffice for tracking.5
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Little existing work has been dedicated to probabilistic–that is, Bayesian–orbit determination
of halo orbits.9 In principle, Bayesian estimation approaches, which operate on probability den-
sity function (pdf) representations of uncertainty, can maintain accurate belief representations even
when the underlying dynamics and observations result in non-Gaussian distributions. For instance,
Gaussian mixture (GM) filters have been successfully employed in traditional SDA applications,
and can be used to approximate any arbitrary pdf with a finite number of discontinuities.10–12 De-
spite these advancements, the cislunar angles-only SDA remains a challenge due to the underlying
multi-body dynamics and observational sparsity.

This paper introduces a new adaptive Bayesian filter based on recent advances in GM filtering
using recursive Gaussian splitting techniques.13, 14 By identifying GM mixture components that
overlap discrete field-of-view (FoV) bounds and splitting them into a finer resolution mixture, the
negative information content of non-detection can be leveraged to further refine the object state pdf.
This paper presents the first application of the splitting approach to 3D FoVs and shows how the
approach can be applied to the incorporation of nonlinear state constraints. Splitting is also em-
ployed in the processing of angles measurements to reduce linearization error and improve estima-
tion performance. In order to capture the rapid nonlinear uncertainty growth between observations,
the adaptive entropy-based Gaussian-mixture information synthesis (AEGIS) approach15, 16 is em-
ployed to automatically split GM components based on the predicted performance of their local
linearization approximation. Additionally, this paper presents a new prediction-stage split criterion
based on Jacobi constant variance. The resulting framework is shown to successfully maintain ac-
curate uncertainty representations in a challenging series of L2 halo orbit determination problems.

PROBLEM FORMULATION

This paper investigates the problem of tracking an object in cislunar space that is subjected to
multi-body dynamics. In particular, we consider the problem of estimating the unknown state of a
satellite in an Earth-Moon halo orbit using only sparse noisy angles measurements from an Earth-
based observer. The space-object state x P Rn is defined as

xT ptq “ rrT ptq vT ptqs “ rx y z 9x 9y 9zsT (1)

where n “ 6, r P R3 denotes the relative position of the space object with respect to the Earth-
Moon barycenter and expressed in the synodic frame, and v P R3 denotes the relative velocity of
the space object as seen in the rotating synodic frame. Throughout this paper, vectors and vector-
valued functions are represented by bold lower-case letters, and matrices are represented by bold
upper-case letters. Although in reality, the Earth-Moon orbit is slightly eccentric, this paper adopts
the circular restricted three-body problem (CR3BP) assumptions. Denote by mC and mK the mass
of the Earth and Moon, respectively, and let

µ fi
mK

mC ` mK

(2)

Then, the CR3BP equations of motion (EOMs) are given by

:x ´ 2 9y “
BU

Bx
, :y ` 2 9x “

BU

By
:z “

BU

Bz
(3)

U “
1 ´ µ

r{C

`
µ

r{K

`
x2 ` y2

2
(4)
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where U is the pseudo-potential, r{C is the distance between the satellite and the Earth center of
mass, and r{K is the distance between the satellite and the Moon center of mass. The CR3BP relative
dynamics admit an integral of motion known as the Jacobi constant, given as

C “ Cpxq “ 2U ´ p 9x2 ` 9y2 ` 9z2q (5)

The Jacobi constant remains constant in the absence of perturbations, and thus can be used to eval-
uate numerical stability in orbit propagation, among other uses.

This paper considers probabilistic orbit determination using angles measurements from ground-
based sensors. The sensor state ξ consists of the sensor position and orientation and determines
the bounded sensor FoV Spξq, where S is modeled as a compact and bounded subset of R3. The
satellite is detectable by the sensor if and only if the line of sight from the sensor to the satellite is
not occluded, the satellite is properly illuminated, and the satellite position is within the sensor FoV.
Accordingly, the probability of detection is a function of both the space object state and sensor state
and defined as

pD,kpx, ξq “ 1Sprq ¨ ϕpx, ξq (6)

where the indicator function

1Bpaq fi

#

1 a P B

0 otherwise
(7)

and where ϕpx, ξq “ 1 if the sensor-facing side of the satellite is illuminated and non-occluded,
and zero otherwise. Note that more sophisticated models that consider visual magnitude5, 6 can be
incorporated but are not considered in this paper.

It is assumed that prior knowledge of the object state is available in the form of a pdf p0pxq at
some initial time t0. At each observation time tk, a sensor produces a measurement set Zk that is
either empty or contains a single vector measurement zk, depending on the probability of detection.
This paper considers the case where zk P R2 takes the form of a noisy right ascension/declination
angle pair, which is related to the satellite and sensor state by the nonlinear relationship

“

αk δ̄k
‰T

“ zk “ hpxk, ξkq ` νk (8)

where the additive measurement noise νk P R2 is zero-mean, Gaussian, and white with covariance
Erνkν

T
k s “ Rk. The problem considered in this paper is the formation of the prior and posterior

distributions pk|k´1pxk|Z0:k´1q and pk|kpxk|Z0:kq, respectively, at each observation step, so as to
provide a probabilistic representation of a cislunar space object’s orbit over time.

METHODOLOGY

This paper presents a novel Bayesian filtering algorithm to address the challenging angles-only
cislunar space object tracking problem. The problem is characterized by strong nonlinearity in both
the object dynamics and observation functions, which result in non-Gaussian state uncertainty and
prohibit the direct adoption of central-moment based filters, such as the extended Kalman filter
(EKF) or UKF. A key feature of the proposed approach is its ability to incorporate information
from non-detections and nonlinear constraints and automatically adapt its approximation accuracy
in key points of the pdf.
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For simplicity, it is assumed that the object-to-measurement data association is known or the rate
of false alarms is zero. In that case, the measurement random finite set (RFS) Zk is characterized
by the likelihood function

gkpZk|xkq “

$

’

&

’

%

1 ´ pD,kpxk;Sq Zk “ H

pD,kpxk;Sqgkpzk|xkq Zk “ tzku

0 |Zk| ą 1

(9)

where gkpzk|xkq denotes the single-object measurement likelihood and is distinguished from the
multi-object likelihood function by the nature of its vector measurement argument. With this, the
Bayes filter recursion is given by the following prediction and measurement update steps:

pk|k´1pxk|Z0:k´1q “

ż

pk|k´1pxk|xk´1qpk´1pxk´1|Z0:k´1qdxk´1 (10)

pkpxk|Z0:kq “
gkpZk|xkqpk|k´1pxk|Z0:k´1q

ş

gkpZk|xqpk|k´1px|Z0:k´1qdx
(11)

where pk|k´1pxk|xk´1q is the state transition density. Unfortunately, closed-form exact solutions of
(10) and (11) are available only for special cases: namely, when p0pxq is Gaussian, the state transi-
tion and measurement likelihood are linear-Gaussian, and the probability of detection pD,kpxk;Sq “

pD,k is constant. Notably, the problem of angles-only cislunar space object tracking involves nonlin-
ear measurements, nonlinear dynamics, and a state-dependent probability of detection, and therefore
requires an approximation of the Bayes filter recursion.

Gaussian Mixture Bayes Filter

While central moment filtering approaches (e.g., the EKF and UKF) have shown to be effective
in quasi-linear problems, they are severely diminished or otherwise inapplicable in truly nonlinear
settings. Alternatively, probabilistic approaches maintain full descriptions of the filtering densities
(as opposed to the first two central moments) and are applicable to a wider range of nonlinear
estimation problems, such as the cislunar space object tracking problem. In particular, the GM is
a highly flexible representation of a pdf and a universal function approximator for the class of pdfs
with a finite number of discontinuities (which are of practical interest).

Consider the discrete-time nonlinear dynamics model given by

xk “ fpxk´1q ` wk´1, Erwk´1w
T
k´1s “ Qk´1 (12)

where the discrete-time dynamics model is obtained through integration of the continuous-time
dynamics. The process noise wk “ wptkq is taken to be zero-mean, Gaussian, and white. Let the
posterior density pk´1pxk´1|Z0:k´1q be a GM

pk´1pxk´1|Z0:k´1q “

Lk´1
ÿ

ℓ“1

w
pℓq
k´1N pxk´1;m

pℓq
k´1,P

pℓq
k´1q (13)

Then, by the Chapman-Kolmogorov equation (10), the prior pdf at tk is the weighted sum

pk|k´1pxk|Z0:k´1q “

Lk|k´1
ÿ

ℓ“1

w
pℓq
k|k´1

ż

N pxk; fpxk´1q,Qk´1qN pxk´1;m
pℓq
k´1, P

pℓq
k´1qdxk´1 (14)
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For sufficiently small component covariances Ppℓq
k´1, the prior pdf can be accurately approximated

by the GM12

pk|k´1pxk|Z0:k´1q «

Lk|k´1
ÿ

ℓ“1

w
pℓq
k|k´1N pxk;m

pℓq
k|k´1,P

pℓq
k|k´1q (15)

where

w
pℓq
k|k´1 “ w

pℓq
k´1 (16)

m
pℓq
k|k´1 “

ż

fpxk´1qN pxk´1; m
pℓq
k´1, P

pℓq
k´1qdxk´1 (17)

P
pℓq
k|k´1 “

ż

pfpxk´1q ´ m
pℓq
k|k´1qpfpxk´1q ´ m

pℓq
k´1qTN pxk´1; m

pℓq
k´1, P

pℓq
k´1qdxk´1 (18)

Closed-form analytic solutions of the integrals in (17) and (18) are not available in general but are
readily approximated by linearization or sigma point approximations, as discussed in the following
subsection.

A question of practical importance, especially as it relates to the propagation of uncertainty under
CR3BP dynamics is, what constitutes a sufficiently small component covariance P

pℓq
k´1? Indeed, as

P
pℓq
k´1 Ñ 0, the right-hand side (RHS) of (15) approaches the true pdf pk|k´1pxk|Z0:k´1q uniformly

in xk and zk [17, Ch. 8]. Another case in which (15) is exact is when the dynamics model fpxk´1q

is linear. Thus, for the purpose of approximating the prior pdf as a GM, the covariances P
pℓq
k´1

should be small enough that state deviations from m
pℓq
k´1 behave linearly over the propagation period

rtk´1, tks. This consideration is central to adaptive GM filtering, as discussed later in the paper.

Let the prior pdf pk|k´1pxk|Z0:k´1q be a GM. Then, given the measurement RFS Zk, the posterior
density is determined using Bayes’ rule as

pkpxk|Z0:kq9δHpZkq

Lk|k´1
ÿ

ℓ“1

p1 ´ pD,kpxk;Sqqw
pℓq
k|k´1N pxk; m

pℓq
k|k´1, P

pℓq
k|k´1q

` p1 ´ δHpZkqq

Lk|k´1
ÿ

ℓ“1

pD,kpxk;Sqw
pℓq
k|k´1gkpzk|xkqN pxk; m

pℓq
k|k´1, P

pℓq
k|k´1q

(19)

The RFS measurement representation and the corresponding state-dependent probability of detec-
tion function enable the incorporation of negative information into the posterior pdf, as seen in
(19). In other words, states that were detectable at time tk but not detected are “downweighted”
according to their associated probability of detection. Let the measurement noise be zero-mean,
Gaussian, white, and independent of the process noise such that the measurement likelihood func-
tion gkpzk|xkq “ N pzk; hpxkq, Rkq, where Rk is the measurement error covariance. Then, the
posterior pdf is approximated as the GM

pkpxk|Z0:kq «

Lk
ÿ

ℓ“1

w
pℓq
k N pxk; m

pℓq
k , P

pℓq
k q (20)
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where

w
pℓq
k 9

$

&

%

w
pℓq
k|k´1p1 ´ pD,kpm

pℓq
k|k´1;Sqq Zk “ H

w
pℓq
k|k´1pD,kpm

pℓq
k|k´1;Sqq

pℓq
k pzkq Zk “ tzku

(21)

m
pℓq
k “

$

&

%

m
pℓq
k|k´1 Zk “ H

m
pℓq
k|k´1 ` Kkpzk ´ ẑ

pℓq
k q Zk “ tzku

(22)

P
pℓq
k “

$

&

%

P
pℓq
k|k´1 Zk “ H

P
pℓq
k|k´1 ´ C

pℓq
k K

pℓqT
k ´ K

pℓq
k C

pℓqT
k ` K

pℓq
k P

pℓq
z K

pℓqT
k Zk “ tzku

(23)

q
pℓq
k pzkq “ N pzk; ẑ

pℓq
k , P

pℓq
z,kq (24)

ẑ
pℓq
k “

ż

hpxkqN pxk; m
pℓq
k|k´1, P

pℓq
k|k´1qdxk (25)

C
pℓq
k “

ż

pxk ´ m
pℓq
k|k´1qphpxkq ´ ẑ

pℓq
k qTN pxk; m

pℓq
k|k´1, P

pℓq
k|k´1qdxk (26)

P
pℓq
z,k “

ż

phpxkq ´ ẑ
pℓq
k qphpxkq ´ ẑ

pℓq
k qTN pxk; m

pℓq
k|k´1, P

pℓq
k|k´1qdxk ` Rk (27)

K
pℓq
k “ C

pℓq
k

´

P
pℓq
z,k

¯´1
(28)

The GM approximation of the posterior pdf is the result of several underlying approximations.
The first of these approximations is the assumed Gaussian form of the measurement likelihood
products gkpzk|xkqN pxk; m

pℓq
k|k´1, P

pℓq
k|k´1q, which are generally non-Gaussian under a nonlinear

measurement function. Second, the predicted measurements, cross covariances, and innovations
covariances (25)-(27) must be approximated via linearization, sigma point methods, or Monte Carlo
integration. Third, the state-dependent probability of detection pD,kpxk;Sq is replaced by a zeroth-
order Taylor expansion about the GM means.14

In the proposed filter, the integrals in (17)-(18) and (25)-(27) are approximated using the square-
root scaled unscented transform,18 as discussed in the following subsection. A subtle but important
observation is that exact knowledge of the aforementioned integrals does not guarantee that the GM
approximations (15) and (19) are exact. This is due to the assumed Gaussian form of transformed
components under time- and measurement-updates, which will be non-Gaussian in general. To
further reduce the approximation error, the GM resolution can be increased in key regions to better
capture non-Gaussian effects, as discussed later in the paper.

Gaussian Mixture Square-Root Sigma-Point Approximation

The nonlinear CR3BP dynamics and nonlinear measurement model prevent exact closed-form
solution of the integrals in (17)-(18) and (25)-(27). Therefore, this paper employs sigma point
approximations,18, 19 where a set of weighted samples are deterministically computed from each
component and propagated through the nonlinear dynamics and measurement equations. In partic-
ular, this paper adopts the square-root scaled unscented transform.18 In the square-root formulation,

covariance matrices are factorized as Ppℓq
k “ S

pℓq
k S

pℓq
k

T
, where Spℓq

k is the lower-triangular Cholesky
square-root factor of the full covariance matrix P

pℓq
k . The Cholesky factor formulation offers many
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advantages, including reduced computational cost, improved numerical stability, and guaranteed
positive semi-definiteness of the state covariance.18

The predicted means (17) and covariances (18) are approximated as follows:

X pℓq
0:2n,k´1 “

”

m
pℓq
k´1 m

pℓq
k´1 ` γS

pℓq
k´1 m

pℓq
k´1 ´ γS

pℓq
k´1

ı

(29)

9X i
pℓq

ptq “ fpX pℓq
i ptqq , X pℓq

i,k|k´1 “ X pℓq
i ptkq (30)

m
pℓq
k|k´1 “

2n
ÿ

i“0

ω
pmq

i X pℓq
i,k|k´1 (31)

S̄
pℓq
k|k´1 Ð qr

"„

b

ω
pcq

1

´

X pℓq
1:2n,k|k´1 ´ m

pℓq
k|k´1

¯ ?
Q

ȷ*

(32)

S
pℓq
k|k´1 Ð choldowndate

"

S̄
pℓq
1:2n,k|k´1,

b

´ω
pcq

0

´

X pℓq
0,k|k´1 ´ m

pℓq
k|k´1

¯

*

(33)

where γ denotes the composite scaling parameter γ “
?
n ` λ and λ “ α2pn`κq´n. The scaling

parameters α, β, and κ control the spread of the 2n` 1 sigma points and determine the sigma point
weights,

ω
pmq

0 “
λ

n ` λ

ω
pcq

0 “
λ

n ` λ
` p1 ´ α2 ` βq (34)

ω
pmq

i “ ω
pcq

i “
1

2pn ` λq
, i “ 1, . . . , 2n

Here, qrpAq is shorthand for the QR decomposition AT “ QR, where only the transpose of
the upper-triangular part of the matrix R is returned. The Cholesky factor of the rank-1 downdate
S̃S̃T “ SST ´ xxT is abbreviated by choldowndatepS, xq. In the case that the second
argument x is a matrix, the downdate is applied successively for each column of x.

Sigma point approximations are also employed in the Bayes measurement update in the case
where the space object is detected and a right-ascension/declination pair is produced. In that case,
the measurement RFS Zk “ tzku, and the posterior means (22) and covariances (23) are approxi-
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mated as follows:

Zpℓq
i,k “ h

´

X pℓq
i,k|k´1

¯

(35)

ẑ
pℓq
k “

2n
ÿ

i“0

ω
pmq

i Zpℓq
i,k (36)

S̄
pℓq
z,k Ð qr

"„
b

ω
pcq

1

´

Zpℓq
1:2n,k ´ ẑ

pℓq
k

¯ ?
Rk

ȷ*

(37)

S
pℓq
z,k Ð choldowndate

"

S̄
pℓq
z,k,

b

´ω
pcq

0

´

Zpℓq
0,k ´ ẑ

pℓq
k

¯

*

(38)

C
pℓq
k “

2n
ÿ

i“0

ω
pcq

i

”

X pℓq
i,k|k´1 ´ m

pℓq
k|k´1

ı ”

Zpℓq
i,k ´ ẑ

pℓq
k

ıT
(39)

K
pℓq
k “

”

C
pℓq
k pS

pℓq
z,kq´T

ı

pS
pℓq
z,kq´1 (40)

m
pℓq
k “ m

pℓq
k|k´1 ` K

pℓq
k

´

zk ´ ẑ
pℓq
k

¯

(41)

S
pℓq
k Ð choldowndate

!

Sx,k|k´1 ,K
pℓq
k S

pℓq
z,k

)

(42)

where
?
Rk represents the square-root factor of Rk such that

?
Rk

?
Rk

T
“ Rk. Note that the

“ ´T ” operation represents the transpose of the inverse of a matrix.

Gaussian Mixture Splitting

Key challenges of the cislunar tracking problem include chaotic dynamics, long observation gaps,
and the massive volume of the cislunar region of interest. The culmination of these challenges is
a nonlinear non-Gaussian estimation problem for which central-moment filters (e.g., the EKF, and
UKF) are inadequate. Standard GM filters address many of the pitfalls of central-moment filters
by approximating the true non-Gaussian state density as a sum of Gaussian kernels. Successful
GM filtering relies on constructing GMs with small enough component covariances such that, on
a component-level, the measurement and dynamics models can be accurately linearized. In the
cislunar tracking problem, fixed-sized (non-adaptive) GM filters degrade over long observation gaps
due to the growth of the component covariances and, consequentially, the violation of the underlying
assumption that time- and measurement-updated components remain Gaussian.

Adaptive GM filtering addresses the shortcomings of fixed-size GM approaches by dynamically
increasing the GM resolution in regions of the state-space where nonlinearity-induced effects are
the strongest. This subsection builds on previous work in adaptive GM filtering and presents a new
algorithm suitable for angles-only cislunar tracking. Unlike existing approaches, the proposed algo-
rithm uses adaptation to accommodate four sources of nonlinearity: nonlinear dynamics, nonlinear
measurements, nonlinear probability of detection, and nonlinear constraints. This subsection also
presents new Gaussian splitting equations based on Cholesky square root factors.

A key mechanism of adaptive GM filtering is Gaussian splitting, where a Gaussian component
is replaced by GM approximation of itself. Splitting is performed efficiently by utilizing a pre-
generated library of optimal split parameters for the univariate standard Gaussian,

qpxq “ N px; 0, 1q « q̃pxq “

R
ÿ

j“1

w̃pjqN px; m̃pjq, σ̃2q (43)
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as first proposed in [20] and refined in [15, 21]. By this approach, the univariate split parameters
tw̃pjq, m̃pjq, σ̃pjquRj“1 can be referenced at runtime and applied to arbitrary multivariate Gaussian
distributions via scaling, shifting, and covariance diagonalization.

To achieve an end-to-end estimation algorithm that is entirely square-root factor-based, this pa-
per introduces a new splitting method based on Cholesky factors. Omitting the time index sub-
scripts for brevity, let λpℓq

i and v
pℓq
i be the ith eigenvalue and corresponding normalized eigenvec-

tor, respectively, of the full covariance matrix SpℓqSpℓqT . Let Vpℓq “ rv1 ¨ ¨ ¨ vns and Λpℓq “

diagprλ
pℓq
1 ¨ ¨ ¨ λ

pℓq
n sq. Then, the multivariate GM component can be split along its ith eigenvector

v
pℓq
i as follows:

wpℓqN px; mpℓq, SpℓqpSpℓqqT q «

R
ÿ

j“1

wpℓ,jqN px; mpℓ,jq, Spℓ,jqpSpℓ,jqqT q (44)

where

wpℓ,jq “ w̃pjqwpℓq (45)

mpℓ,jq “ mpℓq `

b

λ
pℓq
i m̃pjqv

pℓq
i (46)

Spℓ,jq Ð choldowndatepSpℓq,a
pℓq
i q (47)

a
pℓq
i “ Vpℓqp

b

λ
pℓq
i p1 ´ σ̃2qeiq (48)

where the ith element of the canonical basis vector ei is unity and all other elements are zero. The
split Cholesky factor is obtained using the standard Cholesky rank-1 downdate, which computes
the Cholesky factor of SpℓqpSpℓqqT ´ a

pℓq
i pa

pℓq
i qT . While it is possible to split along an arbitrary

non-eigenvector direction, the covariance of the resulting GM will be rotated with respect to the
original component, and thus should be avoided. Note that the computation of Vpℓq and Λpℓq does
require an intermediate computation of the full covariance matrix. Fortunately, when applying the
split approximation recursively, this computation is required only once, as the spectral factorization
of the child components is simply

Vpℓ,jq “ Vpℓq , Λpℓ,jq “ diagprλ
pℓq
1 ¨ ¨ ¨ σ̃2λ

pℓq
i ¨ ¨ ¨ λpℓq

n sq (49)

Generally speaking, splitting can be applied to any component in any spectral direction at any
step in GM filtering. Splitting inherently increases the GM size and filter’s computational cost, and
thus must be performed judiciously. Tractable and accurate GM splitting filtering therefore requires
thoughtful component selection criteria and split direction determination schemes. One approach is
to select components whose linearized and sigma point-based mappings result in significantly dif-
ferent Shannon entropy values.15 Another simple approach considers only the component weights
and splits components with the large posterior weights.22 Weight-based selection criteria may fail
to split important high covariance components that are lower weight individually but nonetheless
contribute significant probability mass in combination with other low-weight components. A better
approach is to choose components based on both their weight and associated linearization error,23

as is discussed later in this subsection.
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Splitting in Prediction Due to the chaotic nature of CR3BP dynamics, space object state uncer-
tainty evolves to form increasingly complex non-Gaussian distributions over time, particularly for
periodic orbits about collinear libration points, which are unstable. Thus, GM tracking solutions
must adapt by increasing the mixture resolution in regions where the assumed Gaussian form of the
nonlinear transformation is most invalid. This paper adopts the AEGIS filter15 structure for predic-
tion, which employs mid-propagation splitting, thereby mitigating repeated solution of the CR3BP
differential equations over the full propagation period.

In addition to the AEGIS entropy-based split criterion, this paper proposes a new split criterion
tailored to cislunar space object tracking. In particular, a component is split if the variance of its
Jacobi constant distribution exceeds a user-specified threshold. In the absence of process noise, the
Jacobi constant variance can be computed from the sigma points as

varpCpℓqptqq “

2n
ÿ

i“0

ω
pcq

i

´

CpX pℓ,iqptqq ´ ErCpℓqptqs

¯2
(50)

ErCpℓqptqs “

2n
ÿ

i“0

ω
pmq

i CpX pℓ,iqptqq (51)

If the Jacobi constant variance exceeds the user-specified threshold σ2
C,max, the component is split

along the eigenvector corresponding to the highest state covariance eigenvalue. In principle, a com-
ponent with high Jacobi constant variance represents large deviations in orbit geometry (as opposed
to different positions along the same orbit) and will inevitably produce a large covariance non-
Gaussian distribution when propagated forward in time.

Aside from this additional criterion, the prediction step is equivalent to the original AEGIS
algorithm and is summarized as follows. Consider a single GM component with index ℓ. Let
ts P rtk´1, tks denote the time at which nonlinearity is detected via the Shannon entropy measure,
the time at which the Jacobi constant covariance exceeds the user-specified threshold, or the end of
the propagation interval tk, whichever comes first. Let ts´1 denote the time at which the last split
occurred. If no split has occurred in the interval, ts´1 is initialized as tk. The component is prop-
agated over t P rts´1, tss using the square-root scaled unscented transform (29)-(33). If ts “ tk,
then the prediction step is complete for the component. Otherwise, the component is split into an
R-component GM along its highest-variance spectral direction according to (44).

Splitting in Update Adaptive splitting is also applied in the processing of right ascension and
declination measurements to reduce linearization errors in the square-root UKF equations. The
unscented transform, which belongs to a broader category of sigma point approximations, is a form
of statistical linearization, which approximates a general nonlinear transformation as y “ gpxq «

Gx ` b.23 In view of the nonlinear measurement transformation hpxq, the optimal Gpℓq
k and b

pℓq
k

are given by23

G
pℓq
k “ C

pℓq
k

T
pS

pℓq
k q

´T
pS

pℓq
k q

´1
and b

pℓq
k “ ẑ

pℓq
k ´ G

pℓq
k m

pℓq
k|k´1 (52)

and the associated linearization error is

e
pℓq
k “ hpxkq ´ G

pℓq
k xk ´ b

pℓq
k (53)

The linearization error in (53) is zero-mean and can be characterized by its covariance matrix

E

„

e
pℓq
k e

pℓq
k

T
ȷ

“ P
pℓq
e,k “ P

pℓq
z̃,k ´ G

pℓq
k S

pℓq
k S

pℓq
k

T
G

pℓq
k

T
(54)
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where Pz̃,k is the predicted measurement covariance for the ℓth component in the absence of mea-
surement noise and is given by

P
pℓq
z̃,k “

2n
ÿ

i“0

ω
pcq

i

´

Zpℓq
i,k|k´1 ´ ẑ

pℓq
k

¯ ´

Zpℓq
i,k|k´1 ´ ẑ

pℓq
k

¯T
(55)

From this readily computable covariance matrix, the linearization error incurred by the sigma
point approximation can be quantified for each component. Components with high linearization
error are identified and split into smaller components to reduce the approximation error. To consider
both the linearization error and the overall statistical significance of a given component, the selection
criteria

s
pℓq
k “ pw

pℓq
k|k´1qΓ ¨ p1 ´ expp´ϵpℓqqq1´Γ P r0, 1s where ϵpℓq “ trpPpℓq

e,kq (56)

is adopted, which represents a geometric interpolation between the weight and linearization error.23

The tuning parameter Γ P r0, 1s determines the relative importance of component weight and lin-
earization error, with Γ “ 0 resulting in only the consideration of linearization error (with no regard
to weight), and Γ “ 1 resulting in only the consideration of the component weight. If spℓq exceeds
the user-specified threshold ϵmax, the component is selected for splitting.

Splitting for Negative Information In cislunar space object tracking, it is important to make use
of all available information, including evidence of where an object is not observed. This form of
evidence is referred to as negative information and is incorporated into the posterior pdf via the
state-dependent probability of detection function pD,kpxk;Sq. Recall that the GM approximation
(20) of the posterior involves the expansion of pD,kpxk;Sq about the component means. In effect, by
this approximation, the probability of detection is assumed to be constant over a given component’s
local support and equal to the probability of detection at that component’s mean.

In some cases, the probability of detection may be different over the local support of a component,
resulting in approximation error and in extreme cases, filter divergence. This is particularly true
for components whose position-marginal density overlaps the sensor FoV boundaries, resulting in
a sharp change in the probability of detection within the component support. To address these
challenges, this paper employs a recently developed recursive splitting algorithm that automatically
identifies components that overlap FoV bounds and splits them until certain stopping criteria are
satisfied,14 as illustrated in Figure 1. Details of the FoV splitting algorithm are omitted for brevity
but can be found in [14].

Nonlinear Constraints In the proposed filter, it is straightforward to incorporate nonlinear con-
straints or soft data from human sources in the same way that negative information is incorporated.
For instance, with knowledge of a satellite’s ∆V capacity and its state at some time, bounds can be
established for the Jacobi constant as

Cminp∆V q ď Cpxq ď Cmaxp∆V q (57)

This constraint can then be incorporated to refine the probabilistic belief by eliminating unreachable
orbits from the probabilistic solution. Defining the set C “ tx : Cpxq P rCmin, Cmaxsu, the GM
weights are updated as

w
pℓq
k|k´19

#

w
pℓq
k|k´1 m

pℓq
k P C

0 otherwise
(58)
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Figure 1. Example space object state probability density function before (left) and
after (right) incorporating negative information (non-detection), obtained using re-
cursive Gaussian mixture splitting.

Note that (58) is found using the same zeroth-order Taylor expansion applied in (21); see [14] for
details. If a component overlaps the 6D Jacobi constant set boundaries BC, it is split to improve the
means-based expansion approximation. A simpler but partial incorporation of the Jacobi constant
constraint can be achieved through splitting about the zero-velocity curves and pruning components
whose positions fall in forbidden regions.

The complete GM Bayes filter for angles-only cislunar tracking is shown in block diagram form
in Figure 2. Between observation opportunities, the GM pdf is propagated according to CR3BP
dynamics. An AEGIS-inspired prediction step evaluates entropy and Jacobi constant variance at
intermediate time steps to detect non-Gaussianity and splits components accordingly. Any nonlinear
constraints, such as bounds on the Jacobi constant, are applied to prior pdf and the weights are
re-normalized. Splitting is also employed in the measurement update stage. If no space object
is detected at a given observation step (Zk “ H), the proposed filter splits GM components along
FoV bounds to incorporate the negative information content of the empty measurement. If the space
object is detected, the nonlinear measurement is incorporated into the posterior pdf via Bayes’ rule
and statistical linearization. If the resulting linearization error is too large, the relevant components
are split until the stopping criterion is satisfied.

RESULTS

To assess the performance of the proposed adaptive GM filter, a tracking problem involving a
satellite in an L2 halo orbit is considered. Synthetic topocentric right ascension and declination
measurements are generated for an Earth-based observer when the satellite is within the FoV and
lighting conditions are satisfied. When lighting conditions are satisfied, but the satellite is not within
the FoV, the resulting observation is the empty set Zk “ H. The sensor FoV is taken to be a
rectangular prism with 3 rdegs vertical and horizontal half angles. Measurements, when available,
are corrupted by white Gaussian noise with standard deviation 102 in each angle, which corresponds
to a 1rpixels standard deviation error in a 2160 ˆ 2160 focal plane array. The parameters of the
adaptive GM filter are provided in Table 1. The FoV orientation is assumed to be such that the
boresight remains fixed in the rotating synodic frame and maintains a fixed angular separation from
the Moon to avoid image saturation. For simplicity, a global network of sensors is assumed such that
an (potentially empty) observation can be made once per hour given suitable lighting conditions.

The initial state uncertainty is assumed to be Gaussian with 20 rkms and 1 rm/ss standard devia-
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UpdateReducek Ð k ` 1
Split

for FoV
Zk “ H?

Lin.
good?

Split

Propagate
t P rts´1, tss

ts “ tk? Apply constraint

Splits Ð s ` 1

pkpxq

no

yes

no

yes

no

yes

pk|k´1pxq

Figure 2. Block diagram of Gaussian mixture Bayes filter for cislunar angles-only tracking.

Table 1. Adaptive Gaussian Mixture Filter Parameters

Parameter Value

Sigma Point Scaling
α 0.001

β 2

κ 0

Noise
?
Qk 0

?
Rk diagpr102 102sq

Gaussian Splitting

R 5

Γ 0.5

σ2
C,max 0.0001

ϵmax 0.01

Lk,max 500
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tion in position and relative velocity, respectively. The initial mean is

m
p1q

0 “
“

1.0697 0 0.2015 0 ´0.1855 0
‰T (59)

which corresponds to a L2 Northern halo orbit with Jacobi constant 3.0169 and stability index
1.0000000000297. For numerical stability, regularization is applied when integrating the CR3BP
EOMs, as described in the Appendix. The performance of the adaptive GM Bayes filter is analyzed
over 500 Monte Carlo trials, in which the initial true state and measurement noise sequence is
randomly varied. Note that randomly generated initial conditions generally result in non-periodic
orbits and diverging visibility profiles. Thus, for the sake of analysis, these samples are differentially
corrected, after which outliers are rejected according to a χ2 hypothesis test. While the differentially
corrected sample covariance is generally smaller than the assumed initial covariance, limiting a more
complete consistency analysis, the sample population still serves to compare performance between
filters.

An example of true satellite halo orbit and the sensor FoV are shown in Figure 3. The total
simulation duration is 30 days, where due to the orbital geometry and solar phase, the satellite is
undetectable for the first two weeks. During this long period of non-observation, the satellite state

0

0.5

1

´0.6´0.4´0.200.20.40.6´0.4

´0.2

0

0.2

0.4

x
y

z

x rLUs

y rLUs

z
rL

U
s

Figure 3. True satellite orbit and sensor FoV as seen in the rotating synodic frame
and expressed in non-dimensional length units. The Earth and Moon positions are
denoted by the blue and grey circles, respectively.

uncertainty grows considerably due to the chaotic dynamics, and the resulting pdf is highly non-
Gaussian by the 15th day, as shown in Figure 4. Despite the fact that the satellite does not enter
the FoV until later in the 15th day, the filter incorporates negative information from the absence of
detections to significantly reduce the state uncertainty, as shown in Figure 5.

Filter performance is measured by the maximum a posteriori (MAP) estimation error over time.
As a measure of the filter’s reported uncertainty, the conditional covariance of the GM pdf is com-
puted and the root-sum of the diagonal elements is taken and referred to as the covariance root sum
square (RSS). The 2-σ RSS values are reported while noting that σ bounds generally do not cor-
respond to curves of constant probability in a non-Gaussian distribution. The estimation error and
2-σ RSS histories are overlaid for all 500 Monte Carlo trials in Figure 6. The estimation error re-
mains below the 2-σ RSS curves in all cases, suggesting that the proposed filter is consistent. After
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Figure 4. Satellite state pdf marginals at t “ 14.2083 rdays, where the true position
coordinates are denoted by red asterisks.

Figure 5. Satellite state pdf marginals at t “ 14.4167 rdays after incorporating nega-
tive information, where the true position coordinates are denoted by red asterisks.

the first observation window, there is an approximately ten-day observation gap, during which the
uncertainty grows by two orders of magnitude. During visibility periods (where one observation
is made every hour), the filter achieves position and velocity estimates that are accurate to within
10 rkms and 1 rm{ss, respectively (and lower in many cases). Of course, these accuracy metrics
must be interpreted within the context of the assumed sensor model specifications. Higher accuracy
estimates can undoubtedly be achieved with higher frequency observations, space-based observers,
and higher accuracy measurements, among other variables.

Figure 6. Estimation error over time (navy) of proposed adaptive GM Bayes filter in
500 Monte Carlo trials of a L2 halo orbit determination problem, where the uncer-
tainty is represented by the 2-σ RSS values shown in purple, and where the horizontal
axis limits reflect the first and last instances of (potential) visibility within the FoV.

As a means of comparison, the same simulation is conducted in 250 Monte Carlo trials using the
square-root unscented Kalman filter (SRUKF). The SRUKF estimation error and covariance RSS
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are shown in Figure 7. In almost all of the 250 trials, the measurement likelihood agreement fell
below the machine precision, resulting in a total filter failure and the termination of the trial. Of the
remaining trials that did complete, all produced estimation errors that significantly exceeded the 2-σ
RSS bounds, indicating filter divergence. The inadequacy of the SRUKF for this estimation problem
is further evidenced by the magnitude of the position estimation error, which at times exceeds the
Earth-Moon semi-major axis.

Figure 7. Estimation error over time (navy) of SRUKF in 250 Monte Carlo trials
of L2 halo orbit determination problem, where the uncertainty is represented by the
2(RSS) values shown in purple, and where the horizontal axis limits reflect the first
and last instances of (potential) visibility within the FoV. The Earth-Moon semi-major
axis is represented by the horizontal gold line for reference.

The stability of the proposed adaptive GM filter is also investigated. To demonstrate the filter
performance in different settings, the filter is applied in 31 different L2 Northern halo orbit deter-
mination problems with Jacobi constants varying between 3.0152 and 3.1584 and stability indices
varying between 1.5801 and 583.7903. Filter convergence was observed in all 31 cases, suggesting
that the proposed adaptive GM filter is applicable to a broad range of angles-only cislunar orbit de-
termination problems. The 31 orbits are shown in Figure 8, where the color of the orbit reflects the
minimum estimation error achieved during that particular orbit simulation. It should be noted that,
unlike the previous analysis, only one trial is conducted per orbit, and thus the reported estimation
error is expected to vary under different measurement noise sequences.

Figure 8. L2 Northern halo orbit family considered in evaluation, where the color of
the orbit reflects the minimum estimation error achieved during simulation.
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CONCLUSIONS

This paper presents a novel Bayesian adaptive Gaussian mixture (GM) filter for angles-only cislu-
nar orbit determination. The filter models the satellite state probability density function as a GM to
appropriately capture the non-Gaussian structure of the evolving state uncertainty. Recursive Gaus-
sian splitting is applied to improve the linearized time- and measurement-update approximations, as
well as to incorporate negative information and nonlinear constraints. The efficacy and robustness
of the filter is demonstrated in 31 representative simulated orbit determination problems across the
L2 Northern halo family, as well as in a 500-trial Monte Carlo analysis.
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APPENDIX

The presence of the inverse of the target’s distance between the primaries, r{C and r{K, in (4)
results in numerical instability during close approaches to either primary. Regularization can be
employed to alleviate the instability, and applying it to a three-dimensional position space occurs
in two steps: the introduction of a fictitious time and a coordinate transform to a four-dimensional
position space.24 The fictitious time, τ , is defined such that dt

dτ “ r{K which has the effect of
“slowing down” time when approaching the Moon. Following a similar derivation of regularized
CR3BP EOMs,25 (3) and (4) can be rewritten in vector form with p¨q1 denoting differentiation with
respect to τ as

r̄2 “
r̄ ¨ r̄1

r̄ ¨ r̄
r̄1 ` }r̄}Br̄1 ´ µ

r̄

}r̄}
` pr̄ ¨ r̄qζ̄ (60)

where r̄ “
“

x ´ 1 ` µ y z 0
‰T , r̄1 “

“

x1 y1 z1 0
‰T ,

ζ̄ “

”

x ´
p1´µqpx`µq

}r{C}3
y ´

p1´µqy
}r{C}3

´
p1´µqz
}r{C}3

0
ıT

, and

B “

»

—

—

–

0 2 0 0
´2 0 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

It can easily be seen that (60) still contains singularities. Thus, a coordinate transform is defined
such that r̄ “ Lpūqū where ū “

“

u1 u2 u3 u4
‰T and

Lpūq “

»

—

—

–

u1 ´u2 ´u3 u4
u2 u1 ´u4 ´u3
u3 u4 u1 u2
u4 ´u3 u2 ´u1

fi

ffi

ffi

fl
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Using this coordinate transform and its associated properties allows (60) to be rewritten without
singularities as

ū2 ´
1

2
hū “ LT pūqBLpūqū1 `

1

2
pū ¨ ūqLT pūqζ̄ (61)

where h “ 1
2p 9̄r0 ¨ 9̄r0q´

µ
}r̄0}

is a constant of integration, and subscript 0 denotes initial values. Initial
conditions in the new four dimensional position space are defined based on the value of x´1`µ.26

If x ´ 1 ` µ ě 0, then u1,0 “

b

1
2ppx0 ´ 1 ` µq ` }r̄0}q and ū0 “

”

u1,0
y0

2u1,0

z0
2u1,0

0
ıT

.

Otherwise, u2,0 “

b

1
2p}r̄0} ´ px0 ´ 1 ` µqq and

ū0 “

”

y0
2u2,0

u2,0 0 z0
2u2,0

ıT
. The derivatives can be related through ū1

0 “ 1
2L

T pū0q 9̄r0. With
initial conditions properly defined, (61) can be numerically integrated to yield a time history of
ū and ū1. Final values in the original coordinate system are then recovered by r̄ “ Lpūqū and
9̄r “ 2

}r̄}
Lpūqū1.
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